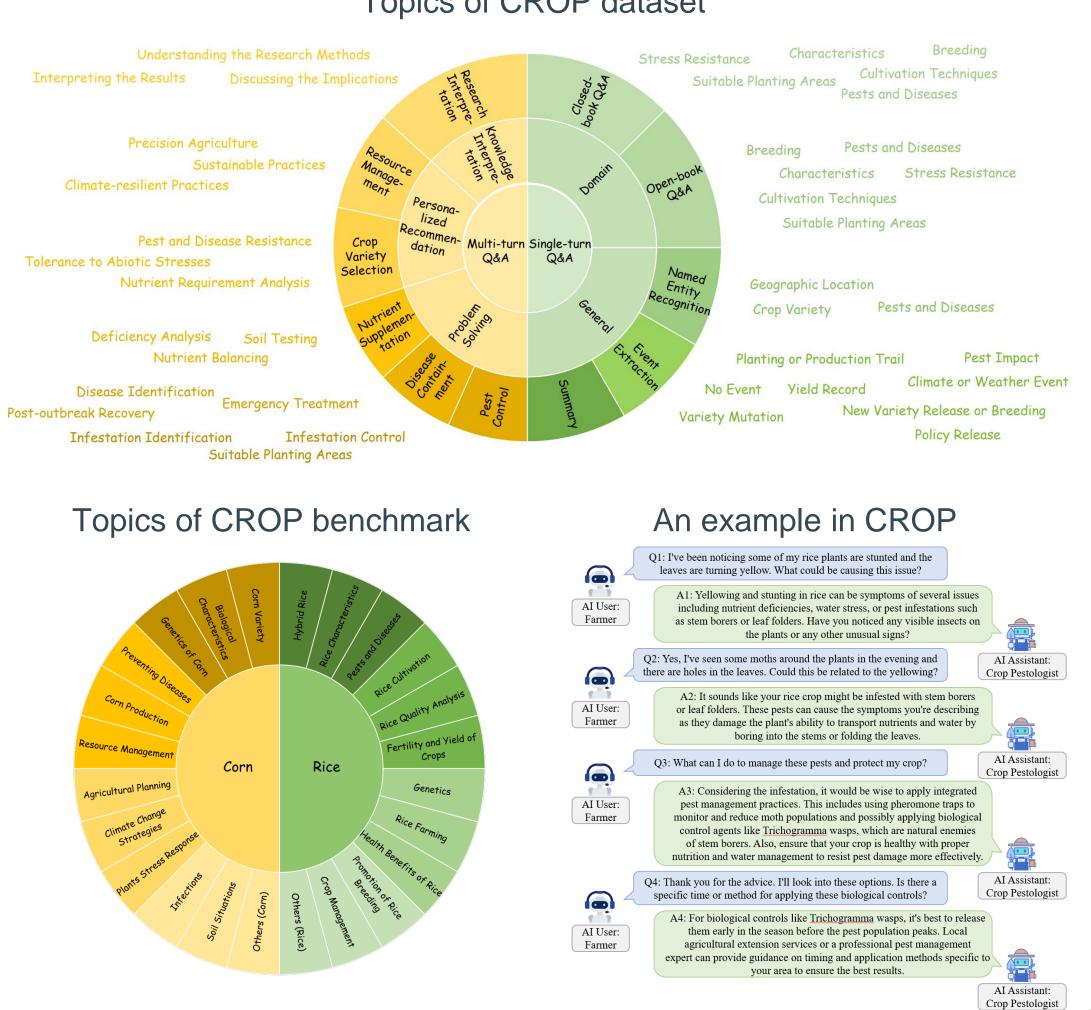
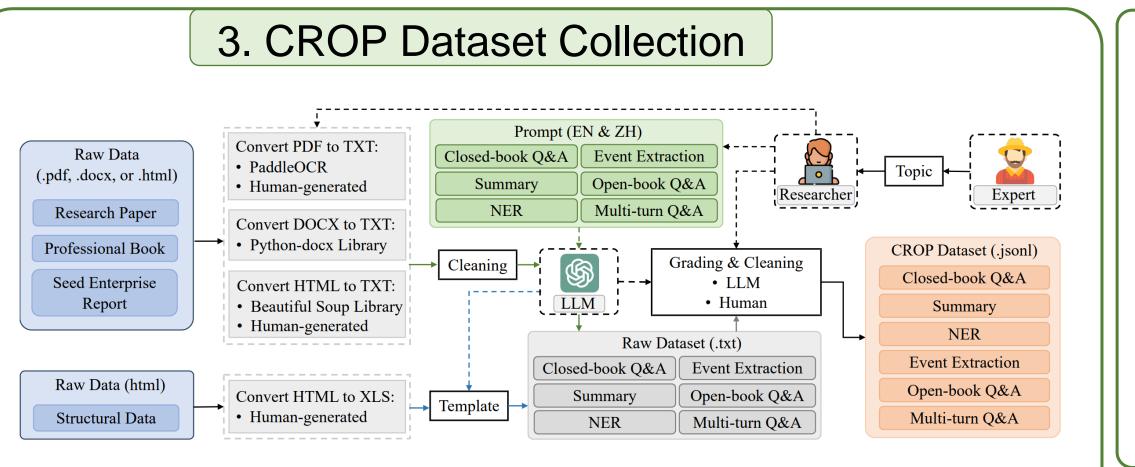


Empowering and Assessing the Utility of Large Language Models in Crop Science

Hang Zhang¹*, Jiawei Sun¹*, Renqi Chen¹*, Wei Liu¹, Zhonghang Yuan¹, Xinzhe Zheng¹, Zhefan Wang¹, Zhiyuan Yang⁴, Hang Yan¹, Hansen Zhong¹, Xiqing Wang³, Wanli Ouyang¹, Fan Yang^{2†}, Nanqing Dong^{1†} ¹ Shanghai Artificial Intelligence Laboratory² Yazhouwan National Laboratory³ China Agricultural University⁴ Hangzhou Dianzi University

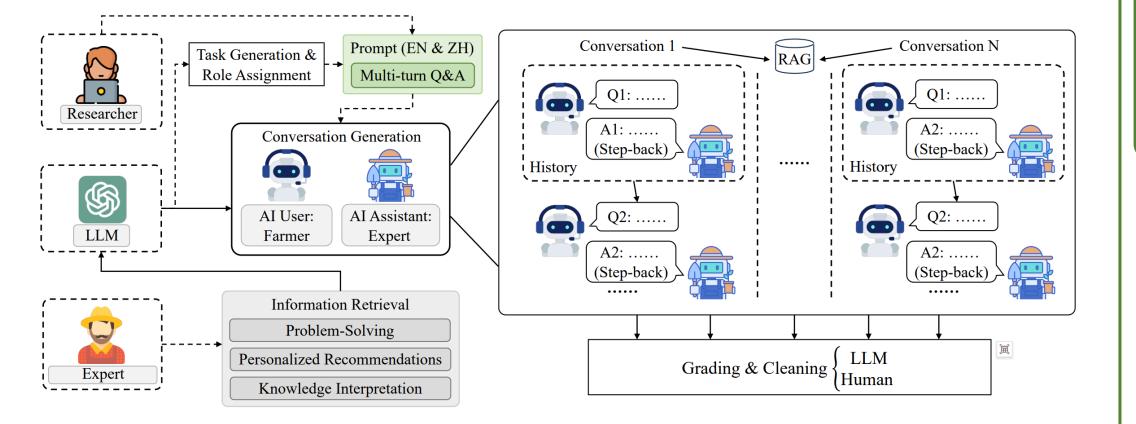

1. Motivation for the CROP

- Crop cultivation has historically been a significant challenge, with uncertainties in harvest yields.
- Recent progress in large language models (LLMs), offers promising opportunities. LLMs can generate professional knowledge and context in response to user inquiries, finding applications in various fields.
- However, LLMs currently face limitations in specific areas, such as pest management, and the existing datasets for agricultural evaluation are insufficient in quantity and locality.


2. Overview of the CROP

To harness the full potential of LLMs for crop science, we propose a suite called CROP, which encompasses

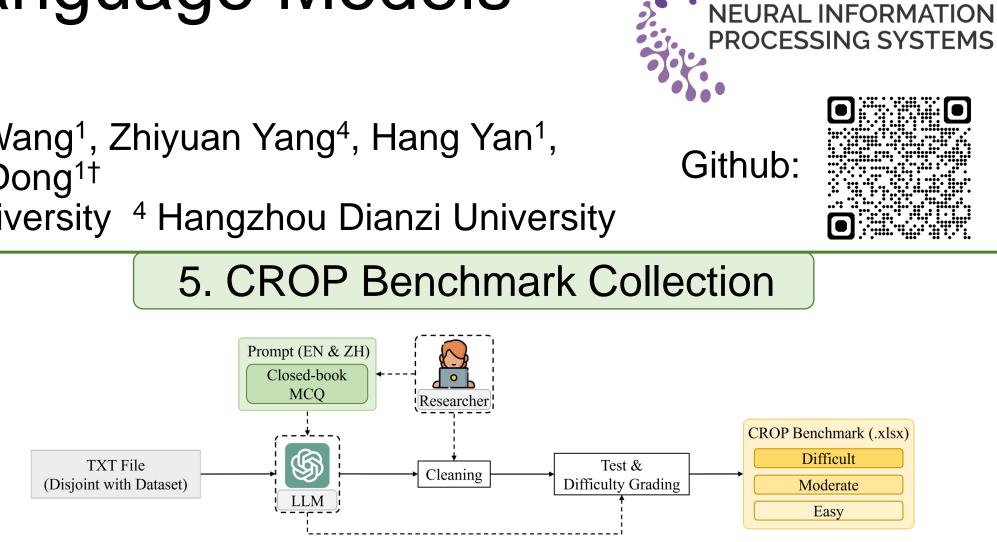
- an extensive instruction-tuning dataset, designed to enhance the domain-specific proficiency of LLMs in crop science.
- a meticulously constructed benchmark, aimed at assessing the performance of LLMs across a variety of domain-related tasks.



Topics of CROP dataset

Single-turn dialogue collection pipeline:

- Raw data is first converted to TXT or XLS format.
- Prompt an LLM to generate Q&As from unstructured data or design templates that transform structured data into dialogue format.
- Filtering steps with both human and LLM involved.



Multi-turn dialogue collection pipeline:

- An LLM creates tasks under the guidance of domain experts and assigns roles to two agents.
- Using task-dependent prompts from researchers, the LLM generates dialogues with RAG.
- Filtering steps.

4. CROP Dataset Analysis

- The single-turn dialogues comprise 210,038 high-quality samples.
- > 140,056 dialogue samples for rice
- ➢ 69,482 dialogue samples for corn
- The multi-turn dialogues include 1,871 high-quality samples.
- > Each task within the multi-turn dialogues has at least 80 samples
- > 3-5 turns of dialogue

• We prompt an LLM to generate MCQs from TXT files.

• After additional filtering steps with both human and LLM involved, we get the CROP benchmark, comprising three difficulty levels.

6. CROP Benchmark Analysis

• 5,045 questions in the benchmark have three difficulty levels:

➤ Easy (1613, 31.97%)

➢ Moderate (2754, 53.72%)

➢ Difficult (722, 14.31%)

 CROP benchmark consists of 5045 Chinese and English MCQs and covers 22 countries across six continents.

7. Experiments

• The performance of selected LLMs on the CROP benchmark

Model	Access	Size	Overall ↑	Difficulty							
				Easy ↑	Moderate \uparrow	Difficult ↑					
Commercial LLMs											
GPT-4 ¹	API	N/A	0.856	1.000^{2}	1.000^{2}	0.000^{2}					
GPT-3.5 ¹	API	N/A	0.328	1.000^{2}	0.000^{2}	0.061					
Claude-3 ¹	API	N/A	0.900	0.982	0.968	0.458					
Qwen ¹	API	N/A	0.866	0.987	0.945	0.301					
Open-source LLMs											
LLaMA3-Base	Weights	8B	0.348	0.443	0.341	0.161					
+CQIA	Weights	8B	0.643 (+0.295)	0.791 (+0.348)	0.651 (+0.310)	0.281 (+0.120)					
+CROP	Weights	8B	0.752 (+0.404)	0.866 (+0.432)	0.772 (+0.431	0.378 (+0.217)					
+CQIA+CROP	Weights	8B	0.754 (+0.406)	0.918 (+0.475)	0.779 (+0.438)	0.295 (+0.134)					
Qwen1.5-Base	Weights	7B	0.646	0.799	0.646	0.302					
+CQIA	Weights	7B	0.688 (+0.042)	0.880 (+0.081)	0.689 (+0.043)	0.258 (-0.044)					
+CROP	Weights	7B	0.676 (+0.030)	0.849 (+0.050)	0.688 (+0.042)	0.202 (-0.100)					
+CQIA+CROP	Weights	7B	0.709 (+0.063)	0.910 (+0.111)	0.704 (+0.058)	0.227 (-0.075)					
InternLM2-Base	Weights	7B	0.368	0.445	0.381	0.148					
+CQIA	Weights	7B	0.723 (+0.355)	0.861 (+0.416)	0.750 (+0.369)	0.317 (+0.169)					
+CROP	Weights	7 B	0.748 (+0.380)	0.945 (+0.500)	0.761 (+0.380)	0.212 (+0.064)					
+CQIA+CROP	Weights	7B	0.768 (+0.400)	0.939 (+0.494)	0.794 (+0.413)	0.285 (+0.137)					

• The performance of LLMs under various training epochs and languages.

Model	Epoch	Size	Overall ↑	Difficulty			Language		
		5120		Easy ↑	Moderate ↑	Difficult ↑	Chinese ↑	English \uparrow	Variation \downarrow
LLaMA3-Base	N/A	8B	0.348	0.443	0.341	0.161	0.327	0.369	4.2%
+CQIA+CROP	1	8B	0.738	0.903	0.758	0.292	0.719	0.757	3.8%
+CQIA+CROP	2	8B	0.742	0.902	0.772	0.271	0.729	0.755	2.6%
+CQIA+CROP	4	8B	0.754	0.918	0.779	0.295	0.738	0.770	3.2%
Qwen1.5-Base	N/A	7B	0.646	0.799	0.646	0.302	0.667	0.624	4.3%
+CQIA+CROP	1	7B	0.702	0.910	0.717	0.183	0.725	0.680	4.5%
+CQIA+CROP	2	7B	0.670	0.875	0.677	0.181	0.690	0.649	4.1%
+CQIA+CROP	4	7B	0.709	0.910	0.704	0.227	0.717	0.686	3.1%
InternLM2-Base	N/A	7B	0.368	0.445	0.381	0.148	0.409	0.327	8.2%
+CQIA+CROP	1	7B	0.764	0.942	0.787	0.276	0.770	0.757	3.3%
+CQIA+CROP	2	7B	0.809	0.909	0.855	0.414	0.811	0.807	0.4%
+CQIA+CROP	4	7B	0.768	0.939	0.794	0.285	0.770	0.766	0.4%